

Increasing the use of DG in the Semiconductor industry

Distributed Power and Industrial DG Program Review/Peer Review January 30, 2002

Technical Project Manager,Tom Rizy, ORNL

Project Manager,Barry Cummings, SRP

Strategic Plan for Distributed Energy Resources *

"Document and widely disseminate the findings of the energy, economic, and environmental benefits of the expanded use of distributed energy resources"

[of combined DER benefits to large energy users, energy suppliers and energy delivery systems]

*Office of Energy Efficiency and Renewable Energy DOE, eptember 2000

Comprehensive National Energy Strategy(CNES)

- # Improve <u>efficiency</u> of energy system
- # Ensure against energy disruptions
- **★** Promote energy production and use respecting <u>health</u> & <u>environmental</u> values
- # Expand future energy choices

Project status related to CNES goals

- **#** Opportunities limited to new FABs.
- **■** Public Process Manageable.
- **■** Unlikely a 'major source' issue
- **♯** Inspections and existing review processes will be challenge.
- **♯** Requires grid connected DER

Increasing DER Opportunities

- **★** Combining supplier & semiconductor FAB plant benefits
- **■** Technical and economic changes in the next 5 to 10 years

- # A management decision guideline
- Research tool for site-specific, feasibility studies
- ★ Identified technical and economic improvements needed

SCOPE & LIMITATIONS

- **♯** Ownership of DER not in scope
- **#** Contractual and rate issues not in scope:

"Social Economics of Alternatives"
Or

"Is there enough \$'s on the table to bother negotiating?"

Semiconductor wafer fabrication characteristics

- **≠** Energy-intensive process
- **■** Requires stable electrical power
- **■** Large production losses from poor power quality
- Large production losses from power outages

KEY FAB OWNER NEEDS

- **■** No additional fuel/energy price risk
- **■** Internal rate of return>18%
- ★ Allow 100% factory function with any/all of the DG system shut down
- **■** Installation <u>not</u> impact factory start-up schedule
- **♯** Factory reliability improved

- **≠** Economical compared to other generation alternatives
- DER grid and 'islanded' dispatchable by utility
- Does <u>not</u> require 'Major Source' air quality permit
- # Highly reliable, i.e. > 98%

- **♯** Combustion turbines most likely DER for next 5-10 years.
- **≠** Fuel cells <u>may</u> become competitive.
- ## DER "Retrofits" at existing FABS will be Insignificant. [economics, space, operation, external constraints]

Two alternatives: One GE LM 6000 or Two GE LM 2500

	CASE								
	2A	2B	3A	3B	4A	4B	5A	5B	
1-GE LM 6000	X	X	X	X					
2-GE LM 2500					X	X	X	X	
Cogeneration	X	X	X	X	X	X	X	X	
Combined Cycle	X	X			X	X		27	
Simple Cycle			X	X			X	X	
Steam Turbine Chillers	X		X	72	X		X		
Absorption Chillers		X		X		X		X	

Case 3A − Cogeneration, 45 MW combustion turbine, 140,000 sq ft clean Room

Key Variables Sensitivity – Combustion Turbine

Case 3A – Cogeneration, simple cycle 45 MW combustion turbine at 140,000 sq ft

Combustion Turbine DER, ancillary benefits

OPERATIONS

- ➡ Product losses from voltage sags > \$1.5M/yr
- **■** Delivery system losses reduced >\$400,000/yr

CAPITAL

- **\$2M** for one less redundant transmission line
- # \$4M Reduced Diesel back-up generation

Combustion Turbine, DER Site (Case 3) Air Emissions

- **♯** NOx 20 tons per year
- **♯** CO 23 tons per year
- **♯** SOx 12 tons per year
- **≠** Particulate matter* 45 tons per year
- **★** Volatile organic compounds 4 tons per year

NOTE: Cogen Simple Cycle Combustion Turbine DER

END

The following are Back-Up Slides to respond to questions

Status

Develop DG Guidelines - Complete

Develop Design Concepts - Complete

Determine Potential Markets - 01/02

Identify Key Risk Factors - 01/02

Draft Final Report - 01/02

Review Final Report - 03/02

Alternatives within contract scope

- **#** Gas Turbines
- # Fuel Cells
- **Alternative energy**sources requiring energy
 storage

DER engineering feasibility design addressing;

- Economics,
- Infrastructure,
- Energy delivery,
- Institutional,
- Regulatory needs.

Sensitivity for key elements

DG comparison

	Combustion	Fuel	Solar	Grid	
	Turbines	Cells	PV	combined	
	(w/o cogen)			cycle	
Plant Capital Cost, \$/kW	450	4,000	6,500	600	
Fixed O&M, \$/kW-yr	20	91.4	17	6	
Net Heat Rate,					
BTU/kWh HHV	10,500	7,500	n/a	7,300	
First Year's Cost,					
Dollars/MWh	54	138	500	51	

1 year total tons of emission change, at site, DG versus no DG 100% 35k clean room new plants

(average seven 2002 & 2003 planned new fabs)

